login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173955
a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4))/16 where Zeta(n, a) is the Hurwitz Zeta function.
14
0, 1, 58, 7459, 192404, 70791869, 37930481726, 3100675399831, 3000384410275816, 3016572632600497, 512004171837010018, 950047080453398607307, 2104850677799349861903388, 609822785846772474028096357, 611130542819711220012487366
OFFSET
1,3
COMMENTS
The denominators are given in A173954.
a(n+2)/A173954(n+2) = (Zeta(2, 3/4) - Zeta(2, n + 7/4))/16 gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(4*n + 3). In the limit n -> infinity the series value is Zeta(2,3/4)/16, with the Hurwitz Zeta function, and it is given in A247037. - Wolfdieter Lang, Nov 15 2017
LINKS
FORMULA
a(n) = numerator of r(n) with r(n) = (Pi^2 - 8*Catalan - Zeta(2, n - 1/4))/16, with the Hurwitz Zeta function Z(2, z), and the Catalan constant is given in A006752. With Zeta(2, 3/4) = Pi^2 - 8*Catalan this is the formula given in the name.
Numerator of Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. - G. C. Greubel, Aug 23 2018
MAPLE
r := n -> (Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4))/16:
seq(numer(simplify(r(n))), n=1..15); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Numerator[FunctionExpand[(Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4])/16]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[8*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[Sum[1/(4*k + 3)^2, {k, 0, n-2}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
PROG
(PARI) for(n=1, 20, print1(numerator(sum(k=0, n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [0] cat [Numerator((&+[1/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
KEYWORD
frac,nonn,easy
AUTHOR
Artur Jasinski, Mar 03 2010
EXTENSIONS
Numbers changed according to the old (or new) Mathematica program, and edited by Wolfdieter Lang, Nov 14 2017
Name simplified by Peter Luschny, Nov 14 2017
STATUS
approved