OFFSET
0,4
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Row sums give A000337.
Central terms give A020522.
T(2*n+1, n) = A006516(n+1).
T(2*n+3, n+2) = A059153(n).
T(2*n, 2*k) = T(n,k) * A173786(n,k), 0 <= k <= n.
T(n, 0) = A000225(n).
T(n, 1) = A000918(n) for n>0.
T(n, 2) = A028399(n) for n>1.
T(n, 3) = A159741(n-3) for n>3.
T(n, 4) = A175164(n-4) for n>4.
T(n, 5) = A175165(n-5) for n>5.
T(n, 6) = A175166(n-6) for n>6.
T(n, n-4) = A110286(n-4) for n>3.
T(n, n-3) = A005009(n-3) for n>2.
T(n, n-2) = A007283(n-2) for n>1.
T(n, n-1) = A000079(n-1) for n>0.
T(n, n) = A000004(n).
EXAMPLE
Triangle begins as:
0;
1, 0;
3, 2, 0;
7, 6, 4, 0;
15, 14, 12, 8, 0;
31, 30, 28, 24, 16, 0;
MATHEMATICA
Table[2^n -2^k, {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 13 2021 *)
PROG
(Magma) [2^n -2^k: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 13 2021
(Sage) flatten([[2^n -2^k for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 13 2021
CROSSREFS
KEYWORD
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved