login
A173561
Numbers k such that gpf(k^2+1)/k sets a new record of low value, where gpf(k) is the greatest prime dividing k (A006530).
0
1, 3, 7, 38, 47, 57, 157, 239, 829, 882, 993, 1772, 2673, 2917, 2943, 4747, 4952, 5257, 6118, 9466, 12943, 17557, 18543, 34208, 44179, 72662, 85353, 114669, 219602, 260359, 320078, 330182, 478707, 485298, 1083493, 1143007, 1477034, 1528649, 1615463, 1635786, 1984933
OFFSET
1,2
COMMENTS
This is an infinite sequence, since the solutions to the Pell equations for primes p = 4*k+1 will give ratios with limit 0. For example, the entry 7 satisfies 7^2 - 2*5^2 = -1 and the ratio is 5/7. However, not all entries are given by this technique.
LINKS
Jonathan Bober, Dan Fretwell, Greg Martin, and Trevor D. Wooley, Smooth values of polynomials, Journal of the Australian Mathematical Society, Vol. 108, No. 2 (2020), pp. 245-261. arXiv:1710.01970 [math.NT] [alternate link]
EXAMPLE
a(3) = 7 because 7^2+1 = 2*5^2 and 5/7 is smaller than all previous results.
MATHEMATICA
f[n_] := FactorInteger[n^2 + 1][[-1, 1]]/n; s = {}; fm = 3; Do[f1 = f[n]; If[f1 < fm, fm = f1; AppendTo[s, n]], {n, 1, 2*10^4}]; s (* Amiram Eldar, Mar 03 2021 *)
CROSSREFS
Sequence in context: A152560 A162926 A042895 * A258840 A209029 A373774
KEYWORD
nonn
AUTHOR
M. J. Knight (melknightdr(AT)verizon.net), Feb 21 2010
EXTENSIONS
More terms from Amiram Eldar, Mar 03 2021
STATUS
approved