login
A173424
Triangle read by rows: T(n, k) = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!).
0
1, 1, 1, 3, 1, 3, 15, 3, 3, 15, 105, 15, 9, 15, 105, 945, 105, 45, 45, 105, 945, 10395, 945, 315, 225, 315, 945, 10395, 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135, 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025, 34459425
OFFSET
0,4
FORMULA
T(n, k) = A006882(2*n-2*k-1) * A006882(2*k-1).
T(n, k) = A001147(n-k) * A001147(k).
From Peter Luschny, Apr 15 2023: (Start)
T(n, k) = (1/Pi) * 2^n * Gamma(k + 1/2) * Gamma(n - k + 1/2).
T(n, k) = (2*n-1)!! * binomial(n, k) / binomial(2*n, 2*k). (End)
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 3, 1, 3;
[3] 15, 3, 3, 15;
[4] 105, 15, 9, 15, 105;
[5] 945, 105, 45, 45, 105, 945;
[6] 10395, 945, 315, 225, 315, 945, 10395;
[7] 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135;
[8] 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025;
MAPLE
T := (n, k) -> doublefactorial(2*n-1) * binomial(n, k) / binomial(2*n, 2*k):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 15 2023
MATHEMATICA
t[n_, k_] = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!);
Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]; Flatten[%]
CROSSREFS
Cf. A034430 (row sums), A006882, A001147.
Sequence in context: A351372 A356411 A355793 * A143081 A179658 A112811
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 18 2010
EXTENSIONS
Formula added by the Assoc. Editors of the OEIS, Feb 24 2010
STATUS
approved