OFFSET
0,3
COMMENTS
Partial sums of number of ordered factorizations of n.
REFERENCES
Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum”, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 21 (1939) pp. 208-219.
Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum” II, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 23 (1941) pp. 767-774.
Kalmár, Laszlo. "Über die mittlere Anzahl der Produktdarstellungen der Zahlen.(Erste Mitteilung)'." Acta Litt. ac Scient. Szeged 5 (1931): 95-107.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..20000
Ann Clifton, Eva Czabarka, Kevin Liu, Sarah Loeb, Utku Okur, Laszlo Szekely, and Kristina Wicke, Universal rooted phylogenetic tree shapes and universal tanglegrams, arXiv:2308.06580 [math.CO], 2023.
Vaclav Kotesovec, Graph - the asymptotic ratio
FORMULA
a(n) = Sum_{i=0..n} A074206(i).
a(n) ~ -n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019
EXAMPLE
a(96) = 0 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 4 + 2 + 3 + 1 + 8 + 1 + 3 + 3 + 8 + 1 + 8 + 1 + 8 + 3 + 3 + 1 + 20 + 2 + 3 + 4 + 8 + 1 + 13 + 1 + 16 + 3 + 3 + 3 + 26 + 1 + 3 + 3 + 20 + 1 + 13 + 1 + 8 + 8 + 3 + 1 + 48 + 2 + 8 + 3 + 8 + 1 + 20 + 3 + 20 + 3 + 3 + 1 + 44 + 1 + 3 + 8 + 32 + 3 + 13 + 1 + 8 + 3 + 13 + 1 + 76 + 1 + 3 + 8 + 8 + 3 + 13 + 1 + 48 + 8 + 3 + 1 + 44 + 3 + 3 + 3 + 20 + 1 + 44 + 3 + 8 + 3 + 3 + 3 + 112.
MATHEMATICA
Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = 1 + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Jan 31 2019 *)
Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; Join[{0}, Accumulate[a /@ Range[100]]] (* Vaclav Kotesovec, Jan 31 2019, after Jean-François Alcover, faster *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 17 2010
EXTENSIONS
Terms corrected by N. J. A. Sloane, May 04 2016
STATUS
approved