login
A173275
a(n) = 169*n^2 + n.
2
170, 678, 1524, 2708, 4230, 6090, 8288, 10824, 13698, 16910, 20460, 24348, 28574, 33138, 38040, 43280, 48858, 54774, 61028, 67620, 74550, 81818, 89424, 97368, 105650, 114270, 123228, 132524, 142158, 152130, 162440, 173088, 184074, 195398, 207060, 219060, 231398, 244074, 257088, 270440, 284130, 298158, 312524
OFFSET
1,1
COMMENTS
The identity (338*n + 1)^2 - (169*n^2 + n)*26^2 = 1 can be written as A158000(n)^2 - a(n)*26^2 = 1. - Vincenzo Librandi, Feb 10 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(13^2*t+1)).
FORMULA
G.f.: x*(-170 - 168*x)/(x-1)^3. - Vincenzo Librandi, Feb 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 10 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {170, 678, 1524}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
PROG
(Magma)[169*n^2+n: n in [1..50]]
(PARI) for(n=1, 50, print1(169*n^2+n ", ")); \\ Vincenzo Librandi, Feb 10 2012
CROSSREFS
Sequence in context: A045089 A114078 A031704 * A301867 A281397 A206122
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 22 2010
STATUS
approved