login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173236
Primes of the form 2^r * 13^s + 1.
3
2, 3, 5, 17, 53, 257, 677, 3329, 13313, 35153, 65537, 2768897, 13631489, 2303721473, 3489660929, 4942652417, 11341398017, 10859007357953, 1594691292233729, 31403151600910337, 310144109150467073, 578220423796228097
OFFSET
1,1
COMMENTS
Necessarily r is even (elementary proof by induction).
s=0 is (trivial) case of 2 and the known five Fermat primes: 2, 3, 5, 17, 257, 65537 (A092506).
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.
REFERENCES
Emil Artin: Galoissche Theorie, Verlag Harri Deutsch, Zuerich, 1973
Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications, 2005
Paulo Ribenboim, Wilfrid Keller, Joerg Richstein: Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006
EXAMPLE
2^0*13^0 + 1 = 2 = prime(1) => a(1).
2^10*13^1 + 1 = 13313 = prime(1581) => a(9).
list of (r,s): (0,0), (1,0), (2,0), (4,0), (2,1), (8,0), (2,2), (8,1), (10,1), (4,3), (16,0), (14,2), (20,1), (20,3), (28,1), (10,6), (26,2), (10,9), (32,5), (40,4), (10,13), (22,10), (32,8), (48,4), (20,13), (2,18), (28,11), (50,6).
PROG
(GAP)
K:=10^7;; # to get all terms <= K.
A:=Filtered([1..K], IsPrime);;
B:=List(A, i->Factors(i-1));;
C:=[];; for i in B do if Elements(i)=[2] or Elements(i)=[2, 13] then Add(C, Position(B, i)); fi; od;
A173236:=Concatenation([2], List(C, i->A[i])); # Muniru A Asiru, Sep 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 13 2010
STATUS
approved