login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=2.
3

%I #43 Oct 09 2023 09:26:28

%S 1,2,13,89,610,4181,28657,196418,1346269,9227465,63245986,433494437,

%T 2971215073,20365011074,139583862445,956722026041,6557470319842,

%U 44945570212853,308061521170129,2111485077978050,14472334024676221

%N a(n) = 7*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=2.

%H G. C. Greubel, <a href="/A172968/b172968.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-1).

%F a(n) = (1/10)*((5+sqrt(5))*((7-3*sqrt(5))/2)^n + ((5-sqrt(5))*((7+3*sqrt(5))/2)^n)).

%F a(n) = sqrt(1 - 2*F(2n+1)*F(2n+2) + 5*(F(2n+1)*F(2n+2))^2), where F = A000045.

%F a(n) = sqrt(1 - 2*A081016(n) + 5*A081016(n)^2).

%F a(n) = A033891(n-1), n>0. - _R. J. Mathar_, Feb 08 2010

%F a(n) = (Lucas(4*n) - Fibonacci(4*n))/2, where Lucas = A000032. - _Gary Detlefs_, Nov 28 2010

%F G.f.: (1 - 5*x)/(1 - 7*x + x^2). - _Bruno Berselli_, Mar 29 2016

%F a(n) = Fibonacci(4*n-1). - _G. C. Greubel_, Jul 15 2019

%F a(n) = (a(n-1)^2 + 9)/a(n-2). - _Klaus Purath_, Aug 30 2020

%p with(combinat):F:= n-> fibonacci(n):L:=n-> 2*F(n+1)-F(n):

%p seq(1/2*(L(4*n)-F(4*n)), n=0..20); # _Gary Detlefs_, Nov 28 2010

%t Table[Sqrt[1-2m+5m^2]/.m ->Fibonacci[2n+1]Fibonacci[2n+2], {n, -1, 30}]

%t CoefficientList[Series[(1-5x)/(1-7x+x^2), {x, 0, 30}], x] (* _Michael De Vlieger_, Mar 29 2016 *)

%t Fibonacci[4*Range[0, 30] -1] (* _G. C. Greubel_, Jul 15 2019 *)

%o (Magma) [n le 2 select n else 7*Self(n-1)-Self(n-2): n in [1..30]]; // _Bruno Berselli_, Mar 29 2016

%o (PARI) x='x+O('x^30); Vec((1-5*x)/(1-7*x+x^2)) \\ _Altug Alkan_, Mar 29 2016

%o (Sage) [fibonacci(4*n-1) for n in (0..30)] # _G. C. Greubel_, Jul 15 2019

%o (GAP) List([0..30], n-> Fibonacci(4*n-1)); # _G. C. Greubel_, Jul 15 2019

%Y Cf. A000032, A000045, A081016.

%Y Essentially the same as A033891.

%K nonn,easy

%O 0,2

%A _Artur Jasinski_, Feb 06 2010