login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that Omega(n) = Omega(n - (digital sum of n)).
1

%I #16 Jun 21 2021 15:30:19

%S 1,10,14,15,20,27,28,30,40,50,52,60,70,75,76,78,80,90,102,105,112,124,

%T 125,132,135,136,140,164,165,176,182,186,188,204,212,224,232,234,248,

%U 252,264,273,275,279,280,290,292,306,308,315,328,336,343

%N Numbers n such that Omega(n) = Omega(n - (digital sum of n)).

%C Omega(n) is the number of prime divisors of n, A001222 (for n>0), taking Omega(0)=0.

%C Omega(a(n)) >= 3 for n >= 5. - _Robert Israel_, Jul 04 2019

%H Robert Israel, <a href="/A172509/b172509.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1)=1 because Omega(1) = Omega(1 - (digital sum of 1)) = Omega(0) = 0;

%e a(2)=10 because Omega(10) = Omega(10 - (digital sum of 10)) = Omega(9) = 2.

%p filter:= proc(n) uses numtheory:

%p bigomega(n) = bigomega(n - convert(convert(n,base,10),`+`))

%p end proc:

%p select(filter, [$1..500]); # _Robert Israel_, Jul 04 2019

%t Join[{1},Select[Range[2,400],PrimeOmega[#]==PrimeOmega[#-Total[ IntegerDigits[ #]]]&]] (* _Harvey P. Dale_, Jun 21 2021 *)

%Y Cf. A001222.

%K nonn,base

%O 1,2

%A _Juri-Stepan Gerasimov_, Nov 21 2010

%E Corrected and edited by _D. S. McNeil_, Nov 21 2010