login
First differences of A172468.
4

%I #12 Mar 30 2012 17:30:05

%S 9,52,9,61,61,9,52,9,61,61,61,9,52,9,61,61,9,52,9,61,61,61,9,52,9,61,

%T 61,9,52,9,52,9,61,61,9,52,9,61,61,61,9,52,9,61,61,9,52,9,61,61,61,9,

%U 52,9,61,61,9,52,9,61,61,61,9,52,9,61,61,9,52,9,52,9,61,61,9,52,9,61,61,61,9

%N First differences of A172468.

%C The numbers in the sequence are conjectured to be restricted to 9,52, or 61. Note that 61-52 = 9, (52+2)/(61-52) = (52+2)/9 = 6, (61+2)/(61-52) = (61+2)/9 = 7 and we have lcm(9,52,61) =28548 = 13^4 - 13 and (52+2)/9 + (61+2)/9 = 6+7 = 13.

%H Stephen Crowley, <a href="http://vixra.org/abs/1203.0004">A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation</a>

%F a(n) = A172468(n+1) - A172468(n).

%Y Cf. A172468, A167389.

%K nonn

%O 1,1

%A _Stephen Crowley_, Feb 04 2010