Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 29 2022 03:48:47
%S 0,0,0,0,48,424,1976,6616,17852,41544,86660,166288,298616,508200,
%T 827168,1296744,1968676,2907016,4189772,5910944,8182400,11136168,
%U 14926536,19732600,25760588,33246664,42459476,53703216,67320392,83695144
%N Number of ways to place 3 nonattacking amazons (superqueens) on an n X n board.
%C An amazon (superqueen) moves like a queen and a knight.
%D Panos Louridas, idee & form 93/2007, pp. 2936-2938.
%H Vincenzo Librandi, <a href="/A172201/b172201.txt">Table of n, a(n) for n = 1..1000</a>
%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,0,14,-14,0,8,-5,1).
%F Explicit formula (Panos Louridas, 2007): a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2040*n - 672)/12 if n is even (n >= 4) and a(n) = (2*n^6 - 20*n^5 + 31*n^4 + 314*n^3 - 1452*n^2 + 2034*n - 669)/12 if n is odd (n >= 5).
%F G.f.: 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7). - _Vaclav Kotesovec_, Mar 24 2010
%F a(n) = (1/24)*(4*n^6 - 40*n^5 + 62*n^4 + 628*n^3 - 2904*n^2 + 4074*n - 1341 + 3*(-1)^n*(2*n-1)) - 20*[n=1] - 8*[n=2] + 4*[n=3]. - _G. C. Greubel_, Apr 29 2022
%t CoefficientList[Series[4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 27 2013 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( 4*x^5*(12+46*x+60*x^2+32*x^3-23*x^4-13*x^5+7*x^6-x^7)/((1+x)^2*(1-x)^7 ))); // _G. C. Greubel_, Apr 29 2022
%o (SageMath) [(1/24)*(4*n^6 -40*n^5 +62*n^4 +628*n^3 -2904*n^2 +4074*n -1341 +3*(-1)^n*(2*n-1)) -4*(5*bool(n==1) +2*bool(n==2) -bool(n==3)) for n in (1..40)] # _G. C. Greubel_, Apr 29 2022
%Y Cf. A047659, A051223, A051224, A061989, A172200.
%K nonn,easy
%O 1,5
%A _Vaclav Kotesovec_, Jan 29 2010