login
A172080
a(n) = n*(12*n^3 + 10*n^2 - 9*n - 7)/6.
1
0, 1, 37, 190, 590, 1415, 2891, 5292, 8940, 14205, 21505, 31306, 44122, 60515, 81095, 106520, 137496, 174777, 219165, 271510, 332710, 403711, 485507, 579140, 685700, 806325, 942201, 1094562, 1264690, 1453915, 1663615, 1895216, 2150192
OFFSET
0,3
COMMENTS
The sequence is related to A172078 by a(n) = n*A172078(n) - Sum_{i=0..n-1} A172078(i).
This is the case d=8 in the identity n^2*(n+1)*(2*d*n-2*d+3)/6 - Sum_{k=0..n-1} k*(k+1)*(2*d*k - 2*d + 3)/6 = n*(n+1)*(3*d*n^2 - d*n + 4*n - 2*d + 2)/12. - Bruno Berselli, May 07 2010, Feb 26 2011
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
a(n) = n*(n+1)*(12*n^2 - 2*n - 7)/6.
G.f.: x*(1 + 32*x + 15*x^2)/(1-x)^5. - Bruno Berselli, Feb 26 2011
E.g.f.: x*(6 + 105*x + 82*x^2 + 12*x^3)*exp(x)/6. - G. C. Greubel, Aug 30 2019
MAPLE
seq(n*(n+1)*(12*n^2 -2*n -7)/6, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
CoefficientList[Series[x(1+32x+15x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
Table[n*(n+1)*(12*n^2 -2*n -7)/6, {n, 0, 40}] (* G. C. Greubel, Aug 30 2019 *)
PROG
(Magma) [(12*n^4+10*n^3-9*n^2-7*n)/6: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
(PARI) vector(40, n, n*(n-1)*(12*(n-1)^2 -2*n -5)/6) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(12*n^2 -2*n -7)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(12*n^2 -2*n -7)/6); G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A172078.
Sequence in context: A142410 A164940 A137724 * A142181 A107196 A140027
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2010
STATUS
approved