login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171992
G.f. satisfies: A(x) = x + A(A(x))^2 - A(A(x))^4.
1
1, 1, 4, 23, 166, 1380, 12684, 125857, 1328084, 14754242, 171338020, 2069009164, 25877555908, 334197713580, 4445788022944, 60800921601639, 853479846713406, 12280659254071964, 180929894848439516, 2726751302240331150, 42001984460083899448, 660800371941797598828
OFFSET
1,3
FORMULA
G.f. satisfies: A( x - A(x)^2 + A(x)^4 ) = x.
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 23*x^4 + 166*x^5 + 1380*x^6 + 12684*x^7 +...
Related series begin:
A(A(x)) = x + 2*x^2 + 10*x^3 + 67*x^4 + 538*x^5 + 4866*x^6 + 48000*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 174*x^5 + 1444*x^6 + 13224*x^7 +...
A(A(x))^4 = x^4 + 8*x^5 + 64*x^6 + 540*x^7 + 4856*x^8 + 46352*x^9 +...
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 54*x^5 + 394*x^6 + 3276*x^7 + 29985*x^8 +...
A(x)^4 = x^4 + 4*x^5 + 22*x^6 + 144*x^7 + 1085*x^8 + 9100*x^9 +...
where the series reversion of the g.f. A(x) begins:
x - A(x)^2 + A(x)^4 = x - x^2 - 2*x^3 - 8*x^4 - 50*x^5 - 372*x^6 - 3132*x^7 -...
PROG
(PARI) {a(n)=local(A=x+x^2, B=x); for(i=1, n, B=subst(A, x, A+x*O(x^n)); A=x+B^2-B^4); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=serreverse(x-A^2+A^4+x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2012
STATUS
approved