login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171709
Numerator of 1/9 - 1/n^2.
4
0, -5, -8, -1, -8, -5, 0, 7, 16, 1, 40, 55, 8, 91, 112, 5, 160, 187, 8, 247, 280, 35, 352, 391, 16, 475, 520, 7, 616, 667, 80, 775, 832, 11, 952, 1015, 40, 1147, 1216, 143, 1360, 1435, 56, 1591, 1672, 65, 1840, 1927, 224, 2107, 2200, 85, 2392, 2491, 32, 2695, 2800, 323, 3016, 3127, 40, 3355, 3472, 133, 3712
OFFSET
-3,2
COMMENTS
A061039 extended to negative n. a(0)=-1 is defined at the pole where the expression is undefined.
LINKS
FORMULA
a(n) = A061039(n), n>2.
a(n) = a(-n).
MAPLE
seq( `if`(n=0, -1, numer(1/9 -1/n^2)), n=-3..65); # G. C. Greubel, Nov 29 2019
MATHEMATICA
Table[If[n==0, -1, Numerator[1/9 -1/n^2]], {n, -3, 65}] (* G. C. Greubel, Nov 29 2019 *)
PROG
(PARI) a(n) = if(n==0, -1, numerator(1/9 -1/n^2)); \\ G. C. Greubel, Nov 29 2019
(Magma) [n eq 0 select -1 else Numerator(1/9 -1/n^2): n in [-3..65]]; // G. C. Greubel, Nov 29 2019
(Sage)
def a(n):
if (n==0): return -1
else: return numerator(1/9 -1/n^2)
[a(n) for n in (-3..65)] # G. C. Greubel, Nov 29 2019
CROSSREFS
Cf. A067998.
Sequence in context: A263497 A198139 A247277 * A093157 A122998 A227158
KEYWORD
sign,easy,frac
AUTHOR
Paul Curtz, Dec 16 2009
EXTENSIONS
Offset set to -3 by R. J. Mathar, Nov 23 2010
STATUS
approved