login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171707
Triangle read by rows: T(n,k) = 2 - k! + 2*n! - (n-k)! - n!*binomial(n,k).
1
1, 1, 1, 1, 0, 1, 1, -7, -7, 1, 1, -53, -98, -53, 1, 1, -383, -966, -966, -383, 1, 1, -2999, -9384, -12970, -9384, -2999, 1, 1, -25919, -95880, -166348, -166348, -95880, -25919, 1, 1, -246959, -1049040, -2177404, -2741806, -2177404, -1049040, -246959, 1
OFFSET
0,8
COMMENTS
Row sums: {1, 2, 2, -12, -202, -2696, -37734, -576292, -9688610, -179355168, -3644133406, ...}.
FORMULA
T(n,k) = 2 - k! + 2*n! - (n-k)! - n!*binomial(n, k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, 1;
1, -7, -7, 1;
1, -53, -98, -53, 1;
1, -383, -966, -966, -383, 1;
1, -2999, -9384, -12970, -9384, -2999, 1;
...
MAPLE
seq(seq( 2 -k! +2*n! -(n-k)! -n!*binomial(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 28 2019
MATHEMATICA
Table[2 -k! +2*n! -(n-k)! -n!*Binomial[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k)= 2 -k! +2*n! -(n-k)! -n!*binomial(n, k); \\ G. C. Greubel, Nov 28 2019
(Magma) F:=Factorial; [2 -F(k) +2*F(n) -F(n-k) -F(n)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 28 2019
(Sage) f=factorial; [[2 -f(k) +2*f(n) -f(n-k) -f(n)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 28 2019
(GAP) F:=Factorial;; Flat(List([0..10], n-> List([0..n], k-> 2 -F(k) +2*F(n) -F(n-k) -F(n)*Binomial(n, k) ))); # G. C. Greubel, Nov 28 2019
CROSSREFS
Sequence in context: A172351 A140136 A281123 * A156722 A152565 A174497
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Dec 15 2009
STATUS
approved