login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hexadecimal expansion of e.
10

%I #17 Mar 21 2023 09:37:24

%S 2,11,7,14,1,5,1,6,2,8,10,14,13,2,10,6,10,11,15,7,1,5,8,8,0,9,12,15,4,

%T 15,3,12,7,6,2,14,7,1,6,0,15,3,8,11,4,13,10,5,6,10,7,8,4,13,9,0,4,5,1,

%U 9,0,12,15,14,15,3,2,4,14,7,7,3,8,9,2,6,12,15,11,14,5,15,4,11,15,8,13,8

%N Hexadecimal expansion of e.

%F a(n) = 8*A004593(4n)+4*A004593(4n+1)+2*A004593(4n+2)+1*A004593(4n+3).

%e 2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E...

%t RealDigits[E~N~200, 16][[1]]

%t RealDigits[E,16,120][[1]] (* _Harvey P. Dale_, Mar 21 2023 *)

%Y Cf. A004593, A001113.

%Y Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), A001113 (b=10), this sequence (b=16). - _Jason Kimberley_, Dec 05 2012

%K cons,base,easy,nonn

%O 1,1

%A _Andrew J. Robbins_, Jan 03 2010, at the request of _N. J. A. Sloane_