login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170837
a(0)=0, a(1)=1 and a(n) = 16n-27 for n >= 2.
3
0, 1, 5, 21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 245, 261, 277, 293, 309, 325, 341, 357, 373, 389, 405, 421, 437, 453, 469, 485, 501, 517, 533, 549, 565, 581, 597, 613, 629, 645, 661, 677, 693, 709, 725, 741, 757, 773, 789, 805
OFFSET
0,3
FORMULA
G.f.: x*(3*x+12*x^2+1)/(x-1)^2.
a(n) = 2*a(n-1) -a(n-2), n>=4.
a(n) = 4*A016813(n-2) + 1, n>=2. - Ivan N. Ianakiev, Jul 20 2013
MATHEMATICA
CoefficientList[Series[x*(3*x + 12*x^2 + 1)/(x - 1)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{2, -1}, {0, 1, 5, 21}, 60] (* Harvey P. Dale, Oct 09 2017 *)
PROG
(Magma) I:=[0, 1, 5, 21]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..60]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
Cf. A170836 (first differences), A170876.
Sequence in context: A039561 A063575 A302873 * A170876 A373193 A341198
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 05 2010, based on email from R. J. Mathar and Benoit Jubin, Jun 02 2009; revised Jan 09 2010
STATUS
approved