login
A170754
Expansion of g.f.: (1+x)/(1-34*x).
50
1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760, 3282855749315577536675840
OFFSET
0,2
FORMULA
a(n)= Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*35^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 35*34^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (1/34)*(35*exp(34*x) - 1). - Stefano Spezia, Oct 09 2019
MAPLE
k:=35; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-34x), {x, 0, 30}], x] (* Harvey P. Dale, Aug 23 2016 *)
With[{k = 35}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
PROG
(PARI) vector(26, n, k=35; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
(Magma) k:=35; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
(Sage) k=35; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
(GAP) k:=35;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170620 A170668 A170716 * A218737 A126158 A200724
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved