OFFSET
0,2
COMMENTS
This is twice A145855 (for n>0), which is the main entry for this problem.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1669
FORMULA
a(n) = A061865(2n,n). - Alois P. Heinz, Aug 28 2018
a(n) ~ 2^(2*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 28 2023
MAPLE
with(combinat): t0:=[]; for n from 1 to 8 do ans:=0; t1:=choose(2*n, n); for i in t1 do s1:=add(i[j], j=1..n); if s1 mod n = 0 then ans:=ans+1; fi; od: t0:=[op(t0), ans]; od:
MATHEMATICA
a[n_] := Sum[(-1)^(n+d)*EulerPhi[n/d]*Binomial[2d, d]/n, {d, Divisors[n]}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 22 2012, after T. D. Noe's program in A145855 *)
PROG
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d, d)/n)); \\ Altug Alkan, Aug 27 2018, after T. D. Noe at A145855
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2010, based on a letter from Jean-Claude Babois.
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 26 2018
STATUS
approved