login
A168870
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
0
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299029504, 351829430966702353416192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170768, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 4303081683335896105218435698391912, A170768(20) = 4303081683335896105218435698393088. - Klaus Brockhaus, Apr 04 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128).
FORMULA
G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^20 - 47*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
CROSSREFS
Cf. A170768 (G.f.: (1+x)/(1-48*x)).
Sequence in context: A168726 A168774 A168822 * A168918 A168966 A169014
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved