login
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
1

%I #14 Nov 24 2016 13:23:50

%S 1,4,12,36,108,324,972,2916,8748,26244,78732,236196,708588,2125764,

%T 6377292,19131876,57395628,172186884,516560646,1549681920,4649045712,

%U 13947136992,41841410544,125524230336,376572687120,1129718049696

%N Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

%C The initial terms coincide with those of A003946, although the two sequences are eventually different.

%C First disagreement at index 18: a(18) = 516560646, A003946(18) = 516560652. - _Klaus Brockhaus_, Mar 27 2011

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A168729/b168729.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).

%F G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^18 - 2*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).

%t CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^18 - 2*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 06 2016 *)

%t coxG[{18,3,-2,30}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Sep 07 2016 *)

%Y Cf. A003946 (G.f.: (1+x)/(1-3*x)).

%K nonn,easy

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009