login
A168701
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 147182649976343967574788, A170743(17) = 147182649976343967575064. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
FORMULA
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 253*t^17 - 22*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 -22*t^5 -22*t^4 -22*t^3 -22*t^2 -22*t +1).
MATHEMATICA
coxG[{17, 253, -22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 29 2016 *)
CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^17 - 22*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 04 2016 *)
CROSSREFS
Cf. A170743 (G.f.: (1+x)/(1-23*x)).
Sequence in context: A167183 A167695 A167938 * A168749 A168797 A168845
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved