login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168472
Partial sums of products of two distinct primes (A006881).
13
6, 16, 30, 45, 66, 88, 114, 147, 181, 216, 254, 293, 339, 390, 445, 502, 560, 622, 687, 756, 830, 907, 989, 1074, 1160, 1247, 1338, 1431, 1525, 1620, 1726, 1837, 1952, 2070, 2189, 2311, 2434, 2563, 2696, 2830, 2971, 3113, 3256, 3401, 3547, 3702, 3860, 4019
OFFSET
1,1
LINKS
MAPLE
N:= 1001: # to get all a(n) where A006881(n) < N
Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
L:= sort(convert({seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)}, list)):
ListTools:-PartialSums(L); # Robert Israel, Apr 29 2018
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1}; s=0; lst={}; Do[If[f[n], AppendTo[lst, s+=n]], {n, 6!}]; lst
With[{nn=50}, Take[Accumulate[Union[Times@@@Subsets[Prime[Range[nn]], {2}]]], nn]] (* Harvey P. Dale, Aug 08 2013 *)
CROSSREFS
Sequence in context: A164052 A264938 A350011 * A054000 A113742 A102214
KEYWORD
nonn
AUTHOR
STATUS
approved