login
A168125
a(n) = n^2*(n^7+1)/2.
1
0, 1, 258, 9846, 131080, 976575, 5038866, 20176828, 67108896, 193710285, 500000050, 1178973906, 2579890248, 5302249771, 10330523490, 19221679800, 34359738496, 59293938393, 99179645346, 161343849070, 256000000200, 397140023511, 603634609138, 900576330996
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
From Harvey P. Dale, Jan 31 2012: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10), where
a(0)=0, a(1)=1, a(2)=258, a(3)=9846, a(4)=131080, a(5)=976575, a(6)=5038866, a(7)=20176828, a(8)=67108896, a(9)=193710285. (End)
G.f.: x*(1 + 248*x+ 7311*x^2 + 44110*x^3 + 78095*x^4 + 44124*x^5 + 7297*x^6 + 254*x^7)/(1 - x)^10. - Ilya Gutkovskiy, Jul 14 2016
MATHEMATICA
Table[(n^2 (n^7+1))/2, {n, 0, 20}] (* or *) LinearRecurrence[ {10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 258, 9846, 131080, 976575, 5038866, 20176828, 67108896, 193710285}, 21] (* Harvey P. Dale, Jan 31 2012 *)
CoefficientList[Series[x (1 + 248 x + 7311 x^2 + 44110 x^3 + 78095 x^4 + 44124 x^5 + 7297 x^6 + 254 x^7)/(1-x)^10, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 14 2016 *)
PROG
(Magma) [n^2*(n^7+1)/2: n in [0..25]]; // Vincenzo Librandi, Jul 14 2016
CROSSREFS
Sequence in context: A271759 A228998 A219991 * A271038 A097734 A121915
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved