login
A167954
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619495694, 250152176221921340678, 9255630520211089605086
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170757, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,-666).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 666*t^16 - 36*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
From G. C. Greubel, Sep 06 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 37*t + 702*t^16 - 666*t^17).
a(n) = 36*Sum_{j=1..15} a(n-j) - 666*a(n-16). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-37*t+702*t^16-666*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016 *)
coxG[{16, 666, -36, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 06 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-37*x+702*x^16-666*x^17) )); // G. C. Greubel, Sep 06 2023
(SageMath)
def A167955_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-37*x+702*x^16-666*x^17) ).list()
A167955_list(40) # G. C. Greubel, Sep 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved