login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167825
Subsequence of A167709 whose indices are congruent to 4 mod 5, i.e., a(n) = A167709(5*n+4).
1
220, 74801, 25432120, 8646845999, 2939902207540, 999558103717601, 339846815361776800, 115546917664900394399, 39285612159250772318860, 13356992587227597688018001, 4541338194045223963153801480
OFFSET
0,1
FORMULA
a(n+2) = 340*a(n+1) - a(n).
a(n+1) = 170*a(n) + 39*sqrt(19*(w(n))^2 + 81).
G.f.: (220 + x)/(1 - 340*x + x^2).
a(n) = ((959*sqrt(19) + 4180)/38)*(170 + 39*sqrt(19))^n + ((-959*sqrt(19) + 4180)/38)*(170 - 39*sqrt(19))^n.
EXAMPLE
a(0) = A167709(4) = 220, a(1) = A167709(9) = 74801.
MAPLE
w(0):=220:for n from 0 to 20 do w(n+1):=170*w(n)+39*sqrt(19*(w(n))^2+81) :od: seq(w(n), n=0..20); for n from 0 to 20 do u(n):=simplify((959*sqrt(19)+4180)/38*(170+39*sqrt(19))^(n)+(-959*sqrt(19)+4180)/38*(170-39*sqrt(19))^(n)):od:seq(u(n), n=0..20); taylor(((220+74801*z-220*340*z)/(1-340*z+z^2)), z=0, 21);
MATHEMATICA
LinearRecurrence[{340, -1}, {220, 74801}, 50] (* G. C. Greubel, Jun 27 2016 *)
RecurrenceTable[{a[1] == 220, a[2] == 74801, a[n] == 340 a[n-1] - a[n-2]}, a, {n, 15}] (* Vincenzo Librandi, Jun 28 2016 *)
PROG
(Magma) I:=[220, 74801]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2016
CROSSREFS
Sequence in context: A049023 A282591 A091756 * A339680 A266237 A371899
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Nov 13 2009
STATUS
approved