login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167242
Number of ways to partition a 2*n X 3 grid into 2 connected equal-area regions.
2
1, 3, 19, 85, 355, 1435, 5717, 22645, 89521, 353735, 1397863, 5525341, 21846421, 86403027, 341822335, 1352660761, 5354124895, 21197945407, 83945924393, 332507403625, 1317329758675, 5220055148883, 20688989887169, 82013159349085, 325165555406795, 1289434099001055, 5114044079094817, 20286061330030705, 80481556028898031
OFFSET
0,2
REFERENCES
D. E. Knuth (Proposer) and Editors (Solver), Balanced tilings of a rectangle with three rows, Problem 11929, Amer. Math. Monthly, 125 (2018), 566-568.
LINKS
Manuel Kauers, Christoph Koutschan, and George Spahn, A348456(4) = 7157114189, arXiv:2209.01787 [math.CO], 2022.
Manuel Kauers, Christoph Koutschan, and George Spahn, How Does the Gerrymander Sequence Continue?, J. Int. Seq., Vol. 25 (2022), Article 22.9.7.
FORMULA
The solution to the Knuth problem gives an explicit g.f. and an explicit formula for a(n) in terms of Fibonacci numbers. - N. J. A. Sloane, May 25 2018
EXAMPLE
Some solutions for n=4
...1.1.1...1.1.1...1.1.2...1.1.2...1.1.2...1.1.1...1.1.1...1.1.1...1.1.1
...1.1.1...1.1.2...1.2.2...1.1.2...1.2.2...2.2.1...1.1.1...2.1.1...1.1.1
...2.2.1...1.2.2...1.1.2...1.2.2...1.2.2...2.2.1...2.1.1...2.2.1...2.1.1
...2.1.1...1.2.2...1.2.2...1.2.2...1.1.2...2.2.1...2.2.1...2.1.1...2.2.1
...2.2.1...1.2.2...1.1.2...1.2.2...1.1.2...2.1.1...2.2.1...2.2.1...2.2.1
...2.2.1...1.1.2...1.1.2...1.2.2...1.1.2...2.1.1...2.1.1...2.1.1...2.2.1
...2.2.1...1.2.2...1.2.2...1.1.2...1.1.2...2.1.1...2.2.2...2.1.2...2.2.1
...2.2.2...1.2.2...1.2.2...1.1.2...2.2.2...2.2.2...2.2.2...2.2.2...2.2.2
CROSSREFS
Sequence in context: A293561 A240286 A163431 * A373681 A089621 A204256
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 31 2009
EXTENSIONS
a(0) = 1 prepended by Don Knuth, May 11 2016
Terms a(21) and beyond from Roberto Tauraso, Oct 11 2016
STATUS
approved