login
A167166
a(n) = n^7 mod 16.
0
0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0
OFFSET
0,4
COMMENTS
Equivalently: n^(4*m+7) mod 16. - G. C. Greubel, Jun 04 2016
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
From R. J. Mathar, Sep 30 2013: (Start)
a(n) = a(n-16).
G.f. -x*(1 +11*x^2 +13*x^4 +7*x^6 +9*x^8 +3*x^10 +5*x^12 +15*x^14) / ( (x-1)*(1+x)*(1+x^2)*(1+x^4)*(1+x^8) ). (End)
a(n) = A130909(A001015(n)). - Michel Marcus, Jun 04 2016
MATHEMATICA
Table[Mod[n^7, 16], {n, 0, 10}] (* G. C. Greubel, Jun 04 2016 *)
PowerMod[Range[0, 100], 7, 16] (* or *) PadRight[{}, 100, {0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15}] (* Harvey P. Dale, Jul 29 2018 *)
PROG
(Sage) [power_mod(n, 7, 16)for n in range(0, 93)] #
(PARI) a(n)=n^7%16 \\ Charles R Greathouse IV, Apr 06 2016
CROSSREFS
Sequence in context: A256480 A088621 A088623 * A271572 A180059 A147765
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Oct 29 2009
STATUS
approved