login
A167067
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}}.
1
3, 969, 232551, 53799849, 12372096000, 2842087396401, 652745210821239, 149910861311886393, 34428589607251552779, 7906872302105745408000, 1815892322798648692785531, 417037814066206883492561817, 95776899454583611992923575575, 21996121549640772495096513751713
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 323 a(n-1)
- 24404 a(n-2)
+ 723520 a(n-3)
- 9950948 a(n-4)
+ 71523505 a(n-5)
- 283937931 a(n-6)
+ 637842312 a(n-7)
- 832457728 a(n-8)
+ 637842312 a(n-9)
- 283937931 a(n-10)
+ 71523505 a(n-11)
- 9950948 a(n-12)
+ 723520 a(n-13)
- 24404 a(n-14)
+ 323 a(n-15)
- a(n-16).
G.f.: -3x (x^14 -2408x^12 +54264x^11 -439553x^10 +1500658x^9 -1911656x^8 +1911656x^6 -1500658x^5 +439553x^4 -54264x^3 +2408x^2 -1)/(x^16 -323x^15 +24404x^14 -723520x^13 +9950948x^12 -71523505x^11 +283937931x^10 -637842312x^9 +832457728x^8 -637842312x^7 +283937931x^6 -71523505x^5 +9950948x^4 -723520x^3 +24404x^2 -323x+1).
CROSSREFS
Sequence in context: A210768 A332193 A167058 * A324443 A151585 A286525
KEYWORD
nonn
AUTHOR
STATUS
approved