login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166691
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
2
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547227, 353563778431304766468, 13435423580389580056521
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, -703).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^12 - 37*t^11 - 37*t^10 - 37*t^9 -37*t^8 -37*t^7 -37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -38*x +740*x^12 -703*x^13). - G. C. Greubel, Apr 26 2019
a(n) = -703*a(n-12) + 37*Sum_{k=1..11} a(n-k). - Wesley Ivan Hurt, May 06 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
coxG[{12, 703, -37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 10 2017 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)) \\ G. C. Greubel, Apr 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13) )); // G. C. Greubel, Apr 26 2019
(Sage) ((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
CROSSREFS
Sequence in context: A165688 A166171 A166433 * A167092 A167537 A167828
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved