login
A166600
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505237, 21979796247091188, 395636332447586151, 7121453984055556524
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^12 - 17*t^11 - 17*t^10 - 17*t^9 -17*t^8 -17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 -17*t + 1).
MATHEMATICA
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 18 2016 *)
coxG[{12, 153, -17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 05 2016 *)
CROSSREFS
Sequence in context: A165341 A165881 A166413 * A167049 A167126 A167676
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved