%I #21 Jun 10 2023 08:10:43
%S 2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,
%T 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
%N Maximal prime gap q-p encountered from 0 to least prime > n.
%D D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, 1996, Section VII.22, p. 249.
%H Daniel Forgues, <a href="/A166594/b166594.txt">Table of n, a(n) for n = 0..100000</a>
%H Helmut Maier and Carl Pomerance, <a href="https://doi.org/10.1090/S0002-9947-1990-0972703-X">Unusually large gaps between consecutive primes</a>, Transactions of the American Mathematical Society 322.1 (1990): 201-237.
%e a(0) = 2 since the least prime greater than 0 is 2 (first occurrence of gap 2).
%e a(7) = 4 since the least prime greater than 7 is 11 (first occurrence of gap 4).
%Y Cf. A002386, A063095, A151800, A166597, A327441.
%K nonn
%O 0,1
%A _Daniel Forgues_, Oct 17 2009