login
A166532
Decimal expansion of A060295^6.
6
3, 2, 7, 4, 5, 1, 6, 6, 6, 6, 3, 9, 0, 7, 9, 2, 0, 0, 5, 0, 3, 2, 9, 2, 5, 3, 5, 8, 6, 6, 5, 4, 1, 2, 5, 0, 2, 6, 5, 2, 4, 8, 7, 8, 8, 2, 7, 4, 6, 9, 1, 5, 2, 6, 8, 2, 5, 9, 7, 1, 1, 5, 6, 7, 4, 7, 7, 3, 1, 8, 5, 6, 1, 0, 0, 9, 7, 1, 2, 5, 5, 4, 8, 0, 4, 6, 8, 8, 3, 6, 9, 6, 3, 0, 6, 4, 2, 8, 3, 7, 7, 5, 0, 7, 2
OFFSET
105,1
COMMENTS
A large near-integer obtained by taking the Ramanujan constant e^(Pi*sqrt(163)) to the sixth power. The constants for even higher powers are in general no longer near integers.
REFERENCES
Henri Cohen, A Course in Computational Algebraic Number Theory, 3., corr. print., Springer-Verlag Berlin Heidelberg New York, 1996 pp. 383.
LINKS
Math Overflow, Questions
Eric Weisstein, Almost Integer, MathWorld
Wikipedia, Heegner number
FORMULA
Equals exp(6*Pi*sqrt(163)) = A166528^3 = A166529^2.
EXAMPLE
327451666639079200503292535866541250265248788274691526825971156\
747731856100971255480468836963064283775072.000097175254162592084120177\
65659310106524359922985819691442056333282681...
MATHEMATICA
RealDigits[Exp[Pi Sqrt[163]]^6, 10, 120][[1]] (* Harvey P. Dale, Nov 27 2011 *)
PROG
(PARI) exp(6*sqrt(163)*Pi) \\ Charles R Greathouse IV, Nov 05 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Mark A. Thomas, Oct 16 2009
EXTENSIONS
Formula edited and connected to other powers by R. J. Mathar, Feb 27 2010
Minor edits by Vaclav Kotesovec, Jul 04 2014
STATUS
approved