login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166151
a(n) = (5*n^2 + 5*n - 6)/2.
2
2, 12, 27, 47, 72, 102, 137, 177, 222, 272, 327, 387, 452, 522, 597, 677, 762, 852, 947, 1047, 1152, 1262, 1377, 1497, 1622, 1752, 1887, 2027, 2172, 2322, 2477, 2637, 2802, 2972, 3147, 3327, 3512, 3702, 3897, 4097, 4302, 4512, 4727, 4947, 5172, 5402, 5637
OFFSET
1,1
FORMULA
From R. J. Mathar, Oct 14 2009: (Start)
a(n) = 5*n*(n+1)/2 - 3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-2-6*x+3*x^2)/(x-1)^3. (End)
E.g.f.: (1/2)*(5*x^2 + 10*x - 6)*exp(x) + 6. - G. C. Greubel, May 01 2016
Sum_{n>=1} 1/a(n) = 1/3 + (2*Pi/sqrt(145))*tan(sqrt(29/5)*Pi/2). - Amiram Eldar, Feb 20 2023
MATHEMATICA
Table[(5 n^2 + 5 n - 6)/2, {n, 50}] (* or *) CoefficientList[Series[(- 2 - 6 x + 3 x^2)/(x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 13 2013 *)
LinearRecurrence[{3, -3, 1}, {2, 12, 27}, 50] (* G. C. Greubel, May 01 2016 *)
PROG
(Magma) [(5*n^2 + 5*n - 6)/2: n in [1..50]]; // Vincenzo Librandi, Sep 13 2013
(PARI) a(n)=(5*n^2+5*n-6)/2 \\ Charles R Greathouse IV, May 02 2016
CROSSREFS
Sequence in context: A294552 A294170 A102960 * A154149 A354780 A119201
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 08 2009
STATUS
approved