login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166138
Trisection A022998(3n+1).
4
1, 8, 7, 20, 13, 32, 19, 44, 25, 56, 31, 68, 37, 80, 43, 92, 49, 104, 55, 116, 61, 128, 67, 140, 73, 152, 79, 164, 85, 176, 91, 188, 97, 200, 103, 212, 109, 224, 115, 236, 121, 248, 127, 260, 133, 272, 139, 284, 145, 296, 151, 308, 157, 320, 163, 332, 169, 344, 175, 356, 181, 368, 187, 380, 193, 392
OFFSET
0,2
FORMULA
a(2n) = 6n+1 = A016921(n).
a(2n+1) = 12n+8 = A017617(n).
a(n) = 2*a(n-2)-a(n-4) = (3n+1)*(3-(-1)^n)/2.
From G. C. Greubel, Apr 26 2016: (Start)
O.g.f.: (1 + 8*x + 5*x^2 + 4*x^3)/((1 - x)^2*(1 + x)^2).
E.g.f.: (1/2)*(-1 + 3*x + (3+9*x)*exp(2*x))*exp(-x). (End)
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1}, {1, 8, 7, 20}, 70] (* Harvey P. Dale, Aug 15 2012 *)
Table[If[OddQ@ #, #, 2 #] &[3 n + 1], {n, 0, 65}] (* or *)
CoefficientList[Series[(1 + 8 x + 5 x^2 + 4 x^3)/((1 - x)^2 (1 + x)^2), {x, 0, 65}], x] (* Michael De Vlieger, Apr 27 2016 *)
CROSSREFS
Sequence in context: A317706 A302677 A304267 * A348673 A302512 A126937
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 08 2009
STATUS
approved