Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Feb 20 2023 03:13:59
%S 1,11,26,46,71,101,136,176,221,271,326,386,451,521,596,676,761,851,
%T 946,1046,1151,1261,1376,1496,1621,1751,1886,2026,2171,2321,2476,2636,
%U 2801,2971,3146,3326,3511,3701,3896,4096,4301,4511,4726,4946,5171,5401,5636
%N a(n) = 5*n*(n+1)/2 - 4.
%C Numbers of the form 5*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - _Bruno Berselli_, Feb 03 2017
%H Vincenzo Librandi, <a href="/A166137/b166137.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = a(n-1) + 5*n = 3*a(n-1) - 3*a(n-2) + a(n-3) = A166151(n)-1.
%F O.g.f.: x*(-1 - 8*x + 4*x^2)/(x - 1)^3. [corrected by _Georg Fischer_, May 11 2019]
%F E.g.f.: (1/2)*(-8 + 10*x + 5*x^2)*exp(x). - _G. C. Greubel_, Apr 26 2016
%F Sum_{n>=1} 1/a(n) = 1/4 + (2*Pi/sqrt(185))*tan(sqrt(37/5)*Pi/2). - _Amiram Eldar_, Feb 20 2023
%p A166137:=n->5*n*(n+1)/2-4; seq(A166137(n), n=1..100); # _Wesley Ivan Hurt_, Nov 12 2013
%t LinearRecurrence[{3, -3, 1}, {1, 11, 26}, 50] (* _Vincenzo Librandi_, Mar 15 2012 *)
%t Table[5 n (n + 1)/2 - 4, {n, 47}] (* or *)
%t Rest@ CoefficientList[Series[x (-1 - 8 x + 4 x^2)/(x - 1)^3, {x, 0, 47}], x] (* _Michael De Vlieger_, Apr 27 2016 *)
%o (PARI) for(n=1, 40, print1(5*n*(n+1)/2-4", ")); \\ _Vincenzo Librandi_, Mar 15 2012
%o (Magma) I:=[1,11,26]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Mar 15 2012
%o (Magma) [5*n*(n+1)/2-4: n in [0..40]]; // _Bruno Berselli_, Feb 03 2017
%Y Cf. A166151.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Oct 08 2009
%E Definition replaced by polynomial from _R. J. Mathar_, Oct 12 2009