login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166136
a(n) = n*(n+3)/2 + 7.
5
9, 12, 16, 21, 27, 34, 42, 51, 61, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 331, 357, 384, 412, 441, 471, 502, 534, 567, 601, 636, 672, 709, 747, 786, 826, 867, 909, 952, 996, 1041, 1087, 1134, 1182, 1231, 1281, 1332, 1384, 1437
OFFSET
1,1
COMMENTS
Numbers m >= 9 such that 8*m - 47 is a square. - Bruce J. Nicholson, Jul 25 2017
FORMULA
a(n) = a(n-1) + n = 3*a(n-1) - 3*a(n-2) + a(n-3) = A145018(n+2) + 2.
G.f.: -x*(9 - 15*x + 7*x^2)/(x-1)^3.
E.g.f.: (1/2)*(14 + 4*x + x^2)*exp(x) - 7. - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = -13/42 + 2*Pi*tanh(sqrt(47)*Pi/2)/sqrt(47). - Amiram Eldar, Dec 13 2022
MATHEMATICA
Table[n*(n+3)/2+7, {n, 1, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {9, 12, 16}, 40] (* Vincenzo Librandi, Mar 15 2012 *)
PROG
(Magma) I:=[9, 12, 16]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
(PARI) for(n=1, 40, print1(n*(n+3)/2+7, ", ")); \\ Vincenzo Librandi, Mar 15 2012
CROSSREFS
Cf. A145018.
Sequence in context: A048699 A019468 A084799 * A120154 A084375 A373267
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 08 2009
EXTENSIONS
Definition replaced by polynomial from R. J. Mathar, Oct 12 2009
STATUS
approved