login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165506
a(0) = 1, a(1) = 8, a(n) = 56*a(n-2) - a(n-1).
2
1, 8, 48, 400, 2288, 20112, 108016, 1018256, 5030640, 51991696, 229724144, 2681810832, 10182741232, 139998665360, 430234843632, 7409690416528, 16683460826864, 398259202498704, 536014603805680, 21766500736121744
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to -8.
FORMULA
G.f.: (1+9*x)/(1+x-56*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*7^k.
a(n) = (16*7^n-(-8)^n)/15. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (16*exp(7*x) - exp(-8*x))/15. - G. C. Greubel, Oct 21 2018
EXAMPLE
a(20)=8250317076996336, a(21)=1210673724145821328, a(22)=-748655967834026512, a(23)=68546384520000020880, a(24)=-110471118718705505552,...
MATHEMATICA
LinearRecurrence[{-1, 56}, {1, 8}, 50] (* G. C. Greubel, Oct 21 2018 *)
CoefficientList[Series[-(1+9x)/(56x^2-x-1), {x, 0, 20}], x] (* Harvey P. Dale, Dec 20 2023 *)
PROG
(PARI) vector(50, n, n--; (16*7^n-(-8)^n)/15) \\ G. C. Greubel, Oct 21 2018
(Magma) [(16*7^n-(-8)^n)/15: n in [0..50]]; // G. C. Greubel, Oct 21 2018
CROSSREFS
Sequence in context: A165041 A165049 A013186 * A165748 A220174 A239888
KEYWORD
sign
AUTHOR
Philippe Deléham, Sep 21 2009
STATUS
approved