OFFSET
0,2
COMMENTS
INVERT transform of the sequence (1, 5, 5*3, 5*3^2, 5*3^3, 5*3^4, ...); i.e., of (1, 5, 15, 45, 135, 405, ...). The sequence can also be obtained by extracting the upper left terms in matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Jul 31 2016
The sequence is A090017 (1, 4, 18, 80, 356, ...) convolved with (1, 2, 0, 0, 0, ...). Also, the upper left terms extracted from matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Aug 20 2016
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,2).
FORMULA
a(n) = ((3+2*sqrt(6))*(2+sqrt(6))^n + (3-2*sqrt(6))*(2-sqrt(6))^n)/6.
G.f.: (1+2*x)/(1-4*x-2*x^2).
a(n) = (i*sqrt(2))^n*(ChebyshevU(n, -i*sqrt(2)) - sqrt(2)*i*ChebyshevU(n-1, -i*sqrt(2))). - G. C. Greubel, Jul 16 2021
MATHEMATICA
LinearRecurrence[{4, 2}, {1, 6}, 30] (* Harvey P. Dale, Mar 16 2013 *)
CoefficientList[Series[(1 +2x)/(1 -4x -2x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 02 2016 *)
PROG
(Magma) [ n le 2 select 5*n-4 else 4*Self(n-1)+2*Self(n-2): n in [1..22] ];
(PARI) Vec((1+2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
(Sage) [(i*sqrt(2))^n*(chebyshev_U(n, -i*sqrt(2)) - sqrt(2)*i*chebyshev_U(n-1, -i*sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 15 2009
STATUS
approved