login
A164549
a(n) = 4*a(n-1) + 2*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
8
1, 6, 26, 116, 516, 2296, 10216, 45456, 202256, 899936, 4004256, 17816896, 79276096, 352738176, 1569504896, 6983495936, 31072993536, 138258966016, 615181851136, 2737245336576, 12179345048576, 54191870867456
OFFSET
0,2
COMMENTS
Binomial transform of A123011. Inverse binomial transform of A164550.
INVERT transform of the sequence (1, 5, 5*3, 5*3^2, 5*3^3, 5*3^4, ...); i.e., of (1, 5, 15, 45, 135, 405, ...). The sequence can also be obtained by extracting the upper left terms in matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Jul 31 2016
The sequence is A090017 (1, 4, 18, 80, 356, ...) convolved with (1, 2, 0, 0, 0, ...). Also, the upper left terms extracted from matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Aug 20 2016
FORMULA
a(n) = ((3+2*sqrt(6))*(2+sqrt(6))^n + (3-2*sqrt(6))*(2-sqrt(6))^n)/6.
G.f.: (1+2*x)/(1-4*x-2*x^2).
a(n) = (i*sqrt(2))^n*(ChebyshevU(n, -i*sqrt(2)) - sqrt(2)*i*ChebyshevU(n-1, -i*sqrt(2))). - G. C. Greubel, Jul 16 2021
MATHEMATICA
LinearRecurrence[{4, 2}, {1, 6}, 30] (* Harvey P. Dale, Mar 16 2013 *)
CoefficientList[Series[(1 +2x)/(1 -4x -2x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 02 2016 *)
PROG
(Magma) [ n le 2 select 5*n-4 else 4*Self(n-1)+2*Self(n-2): n in [1..22] ];
(PARI) Vec((1+2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
(Sage) [(i*sqrt(2))^n*(chebyshev_U(n, -i*sqrt(2)) - sqrt(2)*i*chebyshev_U(n-1, -i*sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 15 2009
STATUS
approved