login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164146
Number of binary strings of length n with equal numbers of 010 and 101 substrings.
8
1, 2, 4, 6, 12, 20, 38, 66, 124, 224, 424, 788, 1502, 2838, 5438, 10386, 20004, 38508, 74516, 144264, 280216, 544736, 1061292, 2069596, 4042254, 7902294, 15466842, 30297422, 59404174, 116558270, 228876426, 449713994, 884199348, 1739434972
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from R. H. Hardin)
Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207, 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From N. J. A. Sloane, Apr 07 2012]
FORMULA
G.f.: -(4*x^4-2*x^3-2*x^2+x+sqrt((2*x-1)*(2*x^2-1)*(2*x^2-2*x+1))) / ((x-1)*(2*x-1)*(2*x^2-1)). - Alois P. Heinz, Apr 16 2015
EXAMPLE
a(5) = 20: 00000, 00001, 00011, 00101, 00110, 00111, 01011, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111. - Alois P. Heinz, Apr 16 2015
CROSSREFS
Column k=1 of A303696.
Column k=0 of A307796.
Sequence in context: A107383 A078025 A178901 * A370582 A279245 A090906
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Aug 11 2009
STATUS
approved