login
A163946
Triangle read by rows, A033184 * A091768 (diagonalized as an infinite lower triangular matrix).
1
1, 1, 1, 2, 2, 2, 5, 5, 6, 6, 14, 14, 18, 24, 22, 42, 42, 56, 84, 110, 92, 132, 132, 180, 288, 440, 552, 426, 429, 429, 594, 990, 1650, 2484, 2982, 2150, 1430, 1430, 2002, 3432, 6050, 10120, 14910, 17200, 11708, 4862, 4862, 6864, 12012, 22022, 39468, 65604, 94600, 105372, 68282
OFFSET
0,4
COMMENTS
As an eigentriangle, equals A033184 * the diagonalized version of its eigensequence. (the eigensequence of triangle A033184 = A091768).
Right border = A091768, left border = Catalan sequence A000108.
Sum of n-th row terms = rightmost term of next row.
FORMULA
Triangle read by rows, A033184 * A091768 (diagonalized such that the right border = (1, 1, 2, 6, 22, 92, 426, 2150,...) i.e. A091768 prefaced with a 1; with the rest zeros).
EXAMPLE
First few rows of the triangle =
1;
1, 1;
2, 2, 2;
5, 5, 6, 6;
14, 14, 18, 24, 22;
42, 42, 56, 84, 110, 92;
132, 132, 180, 288, 440, 552, 426;
429, 429, 594, 990, 1650, 2484, 2982, 2150;
1430, 1430, 2002, 3432, 6050, 10120, 14910, 17200, 11708;
4862, 4862, 6864, 12012, 22022, 39468, 65604, 94600, 105372, 68282;
...
Row 3 = (5, 5, 6, 6) = (5, 5, 3, 1) * (1, 1, 2, 6); where (5, 5, 3, 1) = row 3 of triangle A033184 and (1, 1, 2, 6) = the first 3 terms of A091768 prefaced with a 1.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 06 2009
STATUS
approved