OFFSET
0,3
COMMENTS
Conjecture: if F(x) = exp( Sum_{n>=1} L(n)*x^n/n ) is an integer series,
then the g.f. that satisfies:
G(x) = exp( Sum_{n>=1} G( L(n)*x )^n*x^n/n ) is also an integer series.
Another example of this is A157675 in which L(n) = 2^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 41*x^4 + 385*x^5 + 5769*x^6 +...
log(A(x)) = A(x)*x + A(3x)^2*x^2/2 + A(4x)^3*x^3/3 + A(7x)^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(k=1, n, subst(A, x, sigma(k)*x+x*O(x^n))^k*x^k/k))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2009
STATUS
approved