OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..800
Index entries for linear recurrences with constant coefficients, signature (16, 16, 16, 16, -136).
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
a(n) = 16*a(n-1)+16*a(n-2)+16*a(n-3)+16*a(n-4)-136*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{16, 16, 16, 16, -136}, {1, 18, 306, 5202, 88434, 1503225}, 20] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)) \\ G. C. Greubel, Dec 24 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6) )); // G. C. Greubel, May 13 2019
(Sage) ((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved