login
A163452
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 18, 306, 5202, 88434, 1503225, 25552224, 434343744, 7383094560, 125499873024, 2133281378232, 36262103930496, 616393221671808, 10477621608796800, 178101495469706112, 3027418232198243904, 51460888233840150528
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
a(n) = 16*a(n-1)+16*a(n-2)+16*a(n-3)+16*a(n-4)-136*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{16, 16, 16, 16, -136}, {1, 18, 306, 5202, 88434, 1503225}, 20] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)) \\ G. C. Greubel, Dec 24 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6) )); // G. C. Greubel, May 13 2019
(Sage) ((1+x)*(1-x^5)/(1-17*x+152*x^5-136*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
CROSSREFS
Sequence in context: A097831 A342885 A163104 * A163967 A164630 A164892
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved