login
A163397
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 10, 90, 810, 7290, 65565, 589680, 5303520, 47699280, 429001920, 3858394860, 34701968160, 312105587040, 2807042441760, 25246223065440, 227061682284240, 2042167156174080, 18367021030590720, 165190915209012480
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
a(n) = 8*a(n-1)+8*a(n-2)+8*a(n-3)+8*a(n-4)-36*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, 8, 8, 8, -36}, {1, 10, 90, 810, 7290, 65565}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)) \\ G. C. Greubel, Dec 21 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6) )); // G. C. Greubel, May 12 2019
(Sage) ((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
CROSSREFS
Sequence in context: A010579 A010576 A162983 * A163954 A164548 A164779
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved