login
A162946
Numbers n whose cubes are concatenations n^3 = x//y such that x is an anagram of y.
0
11, 62, 303, 1461, 2002, 5005, 6006, 23784, 25978, 30103, 37755, 40004, 100010, 101101, 107256, 109909, 110011, 112363, 120012, 120741, 126389, 129785, 130013, 140014, 166145, 171265, 184332, 211989, 468388, 501833, 525541, 557815, 578089, 610138, 616912, 617591
OFFSET
1,1
COMMENTS
Cases with leading zeros in y, for example 1001^3 = 1003003001, are not admitted.
EXAMPLE
62^3 = 238328 and 238 is an anagram of 328, which contributes a(2)=62.
MAPLE
isA162946 := proc(n) local n3, x, y ; n3 := convert(n^3, base, 10) ; if nops(n3) mod 2 = 0 then if op(nops(n3)/2, n3) <> 0 then y := sort( [op(1..nops(n3)/2, n3)] ); x := sort( [op(nops(n3)/2+1..nops(n3), n3)] ); RETURN( x = y) ; else false; fi; else false; fi; end:
for n from 1 to 2000000 do if isA162946(n) then printf("%d, \n", n) ; fi; od: # R. J. Mathar, Jul 21 2009
CROSSREFS
Cf. A052052. - R. J. Mathar, Jul 21 2009
Sequence in context: A191596 A227087 A052051 * A301610 A298046 A120723
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 18 2009
EXTENSIONS
Terms beyond 6006 added by R. J. Mathar, Jul 21 2009
STATUS
approved