login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162712
Primes p such that 3^p - 2^p - 2 is also prime.
1
2, 3, 43, 61, 5563, 10093
OFFSET
1,1
COMMENTS
The associated 3^p-2^p-2 are in A162713.
The list of k such that 3^k-2^k-2 is prime is: 2, 3, 43, 61, 63, 1369, ..., where 63 and 1369 are not prime.
No other term <= 15000. - Emeric Deutsch, Aug 03 2009
a(7) > 25000. - Tyler NeSmith, Jul 10 2021
a(7) > 2*10^5. - Michael S. Branicky, Sep 11 2024
EXAMPLE
2 is in the sequence because 3^2-2^2-2 = 3 is prime.
3 is in the sequence because 3^3-2^3-2 = 17 is prime.
MAPLE
a := proc(n) if isprime(n) and isprime(3^n-2^n-2) then n end if end proc:
seq(a(n), n = 1 .. 15000); # Emeric Deutsch, Aug 03 2009
MATHEMATICA
Select[Prime[Range[11000]], PrimeQ[3^# - 2^# - 2] &] (* Vincenzo Librandi, Sep 25 2015 *)
PROG
(PARI) forprime(p=2, 1e3, if (isprime(3^p-2^p-2), print1(p, ", "))) \\ Altug Alkan, Sep 25 2015
(Magma) [p: p in PrimesUpTo(1000) | IsPrime(3^p-2^p-2)]; // Vincenzo Librandi, Sep 26 2015
CROSSREFS
Cf. A162713.
Sequence in context: A255092 A237414 A051099 * A182217 A233314 A062581
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Jul 11 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
a(5)-a(6) from Emeric Deutsch, Aug 03 2009
STATUS
approved