login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162669
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5.
2
0, 144, 1008, 4032, 12096, 30240, 66528, 133056, 247104, 432432, 720720, 1153152, 1782144, 2673216, 3907008, 5581440, 7814016, 10744272, 14536368, 19381824, 25502400, 33153120, 42625440, 54250560, 68402880, 85503600, 106024464, 130491648, 159489792, 193666176
OFFSET
0,2
LINKS
FORMULA
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 144 * A000579(n+5).
G.f.: 144*x/(1-x)^7. (End)
E.g.f.: x*(720 +1800*x +1200*x^2 +300*x^3 +30*x^4 +x^5)*exp(x)/5. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/120.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 661/720. (End)
MAPLE
seq(144*binomial(n+5, 6), n = 0..30); # G. C. Greubel, Aug 27 2019
MATHEMATICA
CoefficientList[Series[144*x/(1-x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 05 2012 *)
Table[(Times@@(n+Range[0, 5]))/5, {n, 0, 30}] (* Harvey P. Dale, Jul 01 2019 *)
144*Binomial[Range[30] +4, 6] (* G. C. Greubel, Aug 27 2019 *)
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5: n in [1..30]]; // Vincenzo Librandi, Mar 05 2012
(PARI) vector(30, n, 144*binomial(n+4, 6)) \\ G. C. Greubel, Aug 27 2019
(Sage) [144*binomial(n+5, 6) for n in (0..30)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..30], n-> 144*Binomial(n+5, 6)); # G. C. Greubel, Aug 27 2019
CROSSREFS
Cf. A000579.
Sequence in context: A120089 A159748 A235957 * A230796 A230789 A165080
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 10 2009
EXTENSIONS
Definition factorized, offset corrected by R. J. Mathar, Jul 13 2009
STATUS
approved