login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162650
E.g.f. satisfies: A(x) = exp( sinh(x*A(x)) ).
1
1, 1, 3, 17, 145, 1657, 23779, 411329, 8335233, 193742001, 5082443619, 148557955537, 4788293136081, 168731904680809, 6453754733373315, 266292315945201409, 11790632930559453313, 557631368540974947169
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (n+1)^(k-1)/k! * Sum_{j=0..k} C(k,j)*(2j-k)^n/2^k.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} m*(n+m)^(k-1)/k! * Sum_{j=0..k} C(k,j)*(2j-k)^n/2^k.
a(n) ~ n^(n-1) / (sqrt(1/s^2+r^2*log(s)) * exp(n) * r^n), where r = 0.3296546568511367672... and s = 2.320640520774412031... are roots of the system of equations sinh(r*s) = log(s), r*s*cosh(r*s) = 1. - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 145*x^4/4! + 1657*x^5/5! +...
log(A(x)) = sinh(x*A(x)) where
log(A(x)) = x + 2*x^2/2! + 10*x^3/3! + 80*x^4/4! + 876*x^5/5! + 12192*x^6/6! +...
PROG
(PARI) {a(n, m=1)=sum(k=0, n, m*(n+m)^(k-1)/k!*sum(j=0, k, (-1)^(k-j)*binomial(k, j)*(2*j-k)^n/2^k))}
CROSSREFS
Cf. A162649.
Sequence in context: A362282 A051442 A368236 * A015735 A290579 A140983
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2009
STATUS
approved