Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 07 2020 08:12:10
%S 4,9,12,16,18,20,25,28,44,45,48,49,50,52,60,63,64,68,72,75,76,80,81,
%T 84,90,92,98,99,108,112,116,117,121,124,126,132,140,147,148,150,153,
%U 156,162,164,169,171,172,175,176,188,192,198,200,204,207,208,212,220,228
%N Numbers m such that A162511(m) = -1.
%C Numbers n where A001222(n)-A001221(n) is odd. - _Enrique Pérez Herrero_, Jul 07 2012
%C This sequence has an asymptotic density (1 - A065472/zeta(2))/2 = 0.264159... (Mossinghoff and Trudgian, 2019). - _Amiram Eldar_, Jul 07 2020
%H Enrique Pérez Herrero, <a href="/A162645/b162645.txt">Table of n, a(n) for n = 1..5000</a>
%H Michael J. Mossinghoff and Timothy S. Trudgian, <a href="https://arxiv.org/abs/1906.02847">A tale of two omegas</a>, arXiv:1906.02847 [math.NT], 2019.
%t Select[Range[10^2],OddQ[PrimeOmega[#]-PrimeNu[#]]&] (* _Enrique Pérez Herrero_, Jul 07 2012 *)
%Y Complement of A162644.
%Y Subsequence of A072587.
%Y Cf. A001221, A001222, A065472, A162643, A162511.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jul 08 2009