login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( 2*Sum_{n>=1} 2^n/A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.
2

%I #7 Jul 04 2018 20:16:06

%S 1,4,10,24,52,112,240,512,1060,2192,4552,9440,19408,39872,81984,

%T 168448,342632,696736,1421200,2897856,5891872,11976064,24361856,

%U 49543168,100329952,203147136,411939264,835168512,1690383744,3420860928

%N G.f.: A(x) = exp( 2*Sum_{n>=1} 2^n/A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

%H G. C. Greubel, <a href="/A162588/b162588.txt">Table of n, a(n) for n = 0..1000</a>

%e G.f.: A(x) = 1 + 4*x + 10*x^2 + 24*x^3 + 52*x^4 + 112*x^5 + 240*x^6 + ...

%e log(A(x))/2 = 2*x + 2*x^2/2 + 8*x^3/3 + 4*x^4/4 + 32*x^5/5 + 32*x^6/6 + 128*x^7/7 + ...

%t nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + 1 - IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Jul 04 2018 *)

%o (PARI) {a(n)=local(L=2*sum(m=1,n,2^(m-valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

%Y Cf. A006519, A000123.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 07 2009